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SUMMARY

A numerical method was developed for flows involving an interface between a homogeneous fluid and
a porous medium. It is based on the finite volume method with body-fitted and multi-block grids. The
Brinkman–Forcheimmer extended model was used to govern the flow in the porous medium region. At its
interface, the flow boundary condition imposed is a shear stress jump, which includes the inertial effect,
together with a continuity of normal stress. The thermal boundary condition is continuity of temperature
and heat flux.

The forced convection through a porous insert over a backward-facing step is investigated. The results
are presented with flow configurations for different Darcy numbers, 10−2 to 10−5, porosity from 0.2 to
0.8, Reynolds number from 10 to 800, and the ratio of insert length to channel height from 0.1 to 0.3.
The heat transfer is improved by using porous insert. To enhance the heat transfer with minimal frictional
losses, it is preferable to have a medium length of insert with medium Darcy number, and larger Reynolds
number. The interfacial stress jump coefficients � and �1 were varied from −1 to 1, and within this range
the average and local lower-wall Nusselt numbers are not sensitive to the parameters. Copyright q 2007
John Wiley & Sons, Ltd.
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1. INTRODUCTION

It has been demonstrated that the insertion of porous material can enhance the heat transfer with
little additional frictional loss. Huang and Vafai [1] studied the flow in a two-dimensional duct
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with intermittently placed porous blocks located on one of the walls, and later they imbedded these
blocks within the duct walls [2]. Fu et al. [3] studied the forced convection in a laminar channel,
which has a porous block on one wall.

Heat transfer would be enhanced if the flow has regions of recirculation and its reduction or
elimination is highly desirable, as wall temperatures are typically high in these regions. Abu-Hijleh
[4] numerically investigated the flow over a backward-facing step with a porous floor segment whose
porosity was varied by changing the pressure loss coefficients, and showed that the maximum local
Nusselt number was higher. Martin et al. [5] numerically investigated the heat transfer enhancement
with porous inserts behind the backward-facing step, with high porosity above 0.90 and Re= 800.
Generally, the porous inserts reduce or eliminate the lower wall recirculation zone, but in some
cases the recirculation zone is lengthened if the inserts are short and extremely porous. More
recently, Zhang and Zhao [6] solved the same problem using a high-order characteristics upwind
finite-volume algorithm. The fluid region was governed by the Navier–Stokes equation and the
porous region by the Brinkman–Forchheimer-extended Darcy model. The two equations were
unified into one set for both the fluid and porous media regions by introducing a binary parameter
which had values one and zero in porous and fluid regions, respectively. Thus, the matching
conditions at the interface were automatically satisfied. For such a single-domain approach, the
physical values at the interface depend on the type of discretization scheme.

The present paper simulates the forced convection flow over a two-dimensional backward-
facing step with a different approach. A two-domain approach is used for the porous and fluid
parts in order to allow for various types of interfacial conditions which includes non-continuity
of shear stress. The control equations in these two domains are Navier–Stokes equations and
Darcy–Brinkman–Forchheimer-extended model for fluid and porous regions, respectively.

The interfacial conditions have to be coupled in solving the equations for the two regions and
additional boundary conditions are applied at the interface. Boundary conditions for flow and heat
transfer at the porous–fluid interface have been proposed previously and summarized in Tables I
and II.

One of the early flow boundary conditions was that of Beavers and Joseph [7] who proposed
the slip-boundary condition, in which the interfacial fluid shear was related to the interface fluid
velocity and the Darcy flow was assumed in the porous region. The interface condition contained
a jump in both stress and velocity. However, a continuity in both velocity and stress was proposed
by Neale and Nader [8] as well as Vafai and Kim [9]. The continuity of shear stress was also
assumed by Vafai and Thiyagaraja [10] as well as Kim and Choi [11], but there is non-continuity of
velocity gradient, which is satisfied by using an effective viscosity for the porous medium region.

The non-continuity of both velocity gradient and shear stress has been developed by Ochoa-Tapia
and Whitaker [12, 13]. The development was based on the non-local form of the volume-averaged
Stokes’ equation. The length-scale constraint was that the radius of the averaging volume is much
smaller than the height of the fluid channel. Under these circumstances, the volume-averaged
equations in the homogeneous fluid regions are equivalent to the point equations; and the analysis
of jump condition is greatly simplified because a single volume-averaged transport equation is
valid in both fluid and porous regions. The jump condition joins the Darcy law, with Brinkman’s
correction, to the Stokes equation. The analysis produced a jump in the stress but not in the velocity.
The normal component of jump condition simply reduced to continuity of pressure. The function
for the jump coefficient indicates dependence on permeability and porosity and was complex to
solve. The coefficient was expected to be of the order 1, and may be either positive or negative. It
was noted that the parameter depends on

√
K/�, where � is the thickness of the boundary region.
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Table I. Velocity boundary conditions at interface between porous and fluid domains.

Model Velocity Velocity gradient Reference

1
�ux
�y

∣∣∣∣
fluid

= �√
K

(ux |interface − 〈u〉∞) [7]

2 〈u〉x |porous = ux |fluid �〈u〉x
�y

∣∣∣∣
porous

= �ux
�y

∣∣∣∣
fluid

[8, 9]

3 〈u〉x |porous = ux |fluid �eff
�〈u〉x
�y

∣∣∣∣
porous

= �
�ux
�y

∣∣∣∣
fluid

[10, 11]

4 〈u〉x |porous = ux |fluid �
�

�〈u〉x
�y

∣∣∣∣
porous

− �
�ux
�y

∣∣∣∣
fluid

= �
�√
K
ux

∣∣∣∣
interface

[12–15]

5 〈u〉x |porous = ux |fluid �
�

�〈u〉x
�y

∣∣∣∣
porous

− �
�ux
�y

∣∣∣∣
fluid

= �
�√
K
ux

∣∣∣∣
interface

+ �1�u
2
x |interface [16]

Table II. Heat transfer boundary conditions at interface between porous and fluid domains.

Model Temperature Temperature gradient Reference

1 〈T 〉|porous = T |fluid keff
�〈T 〉
�y

∣∣∣∣
porous

= kf
�T
�y

∣∣∣∣
fluid

[8, 10, 11, 17–19]

2 〈T 〉|porous = T |fluid keff
�〈T 〉
�y

∣∣∣∣
porous

= kf
�T
�y

∣∣∣∣
fluid

+ � [20]

3
dT

dy

∣∣∣∣
fluid

= �T
�

(T |fluid − 〈T 〉|porous) keff
�〈T 〉
�y

∣∣∣∣
porous

= kf
�T
�y

∣∣∣∣
fluid

[21]

Subsequently, Ochoa-Tapia and Whitaker [16] developed another stress jump condition, which
includes the inertial effects. Though inertial effects may be negligible in homogeneous regions of
channel flow, it is not negligible in the boundary between the porous and fluid regions. Outside the
boundary regions, the non-local form of the volume-averaged momentum equation reduces to the
Forchheimer equation with Brinkman correction and the Navier–Stokes equation. Two coefficients
appear in this jump condition: one is associated with an excess viscous stress and the other is
related to an excess inertial stress.

Ochoa-Tapia and Whitaker [16] derived analytical expressions for parameters � and �1, which
indicate their dependence on permeability and porosity. They concluded that these two parameters
are both of order 1. Ochoa-Tapia and Whitaker [13] experimentally determined that � varies from
+0.7 to −1.0 for different materials with permeability varying from 15× 10−6 to 127× 10−6 in2

and average pore size from 0.016 to 0.045 in. There is presently no experimental data for �1. It is
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not known how much the two parameters may change from one type of interface to another; and
it is assumed, in this study, that the changes should be in the same range as those for different
types of materials.

The stress jump parameter (associated with an excess viscous stress) was derived by Goyeau
et al. [14] as an explicit function of the effective properties of a transition layer between the fluid
and porous regions. The parameter is also related to the variations of the velocity in the transition
layer, which is an unknown in the problem. Recently, Chandesris and Jamet [15] presented a model,
in which the shear jump is built on the fluid stress rather than on the effective stress. An explicit
function for the stress jump coefficient was obtained which only depends on the characteristics of
the porous medium (porosity and permeability) in the transition zone.

Numerical solutions for the coupled viscous and porous flows have been attempted by many
researchers [22–26]. Jue [22] simulated vortex shedding behind a porous square cylinder by finite
element method. In his study, a general non-Darcy porous media model was applied to describe
the flows both inside and outside the cylinder. A harmonic mean was used to treat the sudden
change between the fluid and porous medium. Costa et al. [24] proposed a control-volume finite
element method to simulate the problems of coupled viscous and porous flows. A continuity of
both velocity and stress at the interface was assumed and no special or additional procedure was
needed to impose the interfacial boundary conditions. Betchen et al. [26] developed a finite volume
model, also based on continuity of both velocity and stress, but special attention was given to the
pressure–velocity coupling at the interface.

Different types of interfacial conditions between a porous medium and a homogeneous fluid
have been proposed; and found to have a pronounced effect on the velocity field as shown by
Alazmi and Vafai [27]. The one-domain approach has an automatically satisfied continuity of both
velocity and stress, which is easier to implement. Nevertheless, the stress jump conditions have
been adopted by many researchers.

The implementation of the numerical methodology on the stress jump condition based on Ochoa-
Tapia and Whitaker [12, 13] can be found in the work of Silva and de Lemos [23]. Although they
proposed that their treatment could be used in a complex geometry, their results were based on
finite volume method in an orthogonal Cartesian coordinate system and for the case of fully
developed flow. In their study, only the jump in shear stress was included and no special treatment
on velocity derivatives was mentioned. However, for flow in general, it is needed to consider how
to formulate the velocity derivatives at the interface. Also, for the two-dimensional problem, the
normal stress condition is needed to close the sets of equations.

For heat transfer interface conditions, usually continuities of temperature and heat flux are
required [8, 10, 11, 17–19]. However, other types of interfacial conditions are also possible. Ochoa-
Tapia and Whitaker [20] proposed a jump condition for heat flux to account for its production
or consumption at the interface. Another hybrid interfacial condition, continuity of heat flux but
non-continuity in temperature, was proposed by Sahraoui and Kaviany [21].

The objective of the present study was to implement a numerical method based on finite volume
method to treat the interfacial boundary conditions for both flow and heat transfer. It adopts the
stress jump condition given by Ochoa-Tapia and Whitaker [16], which includes the inertial effects.
For heat transfer, the continuity of temperature and heat flux is implemented although the present
method can also treat other interfacial conditions. The present method extends a previous study
by Yu et al. [28] who only treated flow interfacial conditions. The present implementation is
demonstrated on the flow and forced convection in a backward-facing step with a porous insert.
The range of Reynolds number is from 10 to 800, Darcy number from 10−2 to 10−5, and porosity
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from 0.2 to 0.8. The stress jump interfacial condition effects on the average Nusselt number are
also considered.

2. MATHEMATICAL MODEL

Steady, two-dimensional, laminar and incompressible flow over a backward-facing step is con-
sidered here (Figure 1). The porous insert is located after the step. The inlet flow velocity is
specified as a parallel flow with a parabolic horizontal component given by u(y)= 24y(0.5 − y)
for 0�y�0.5. This produces an average inflow velocity of uav = 1.0, which is treated as the ref-
erence velocity. The inlet flow and step wall temperature are set to Ti; the upper and bottom wall
supply a constant heat flux q; and the outlet condition is adiabatic.

The porous medium is considered to be rigid, homogeneous and isotropic; and saturated with
the same single-phase fluid as that in the homogeneous fluid region. Considering viscous and
inertial effects, the governing equations for porous region based on Darcy–Brinkman–Forchheimer
extended model can be expressed as [29, 30]

Continuity equation:

�u
�x

+ �v

�y
= 0 (1)

X-momentum equation:

1

�

{
u

�
�x

(u
�

)
+ v

�
�y

(u
�

)}

=−1

�

�
�x

(�p f ) − 1

Da · Reu − 1.75√
150

(u2 + v2)1/2√
Da

u

�3/2
+ 1

� · Re

(
�2u
�x2

+ �2u
�y2

)
(2)

Y-momentum equation:

1

�

{
u

�
�x

(v

�

)
+ v

�
�y

(v

�

)}

=−1

�

�
�y

(�p f ) − 1

Da · Rev − 1.75√
150

(u2 + v2)1/2√
Da

v

�3/2
+ 1

� · Re

(
�2v
�x2

+ �2v
�y2

)
(3)

H/2

L=15H

H

a
porous insert 

Figure 1. Schematic of the flow model.
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Energy equation:

u
�T
�x

+ v
�T
�y

= Rk · 1

Pr · Re

(
�2T
�x2

+ �2T
�y2

)
(4)

where x and y are the horizontal and vertical coordinates; u and v are the local dimensionless
average velocity (Darcy velocity); T is the dimensionless average temperature; � is the porosity;
p f is the intrinsic average pressure; Rk is the ratio of thermal conductivity in porous and fluid
regions; Pr is the Prandtl number of the fluid; Da is the Darcy number; and Re is the Reynolds
number. In the momentum equations (2) and (3), the second, the third and fourth terms on the
right-hand side are called Darcy, Forchheimer and Brinkman terms, respectively.

The non-dimensional parameters are defined as follows:

Rk = keff
k f

, Pr= �

��

Da = K

H2
, Re= UavH�

�

(5)

where H is the channel height; � is the fluid density; � is the fluid kinematic viscosity; K is the
permeability; � is the fluid thermal diffusivity; k f is the fluid thermal conductivity; and keff is
effective thermal conductivity of porous media.

For the homogeneous fluid part, the governing equations are
Continuity equation:

�u
�x

+ �v

�x
= 0 (6)

X-momentum equation:

u
�u
�x

+ v
�u
�y

=−�p
�x

+ 1

Re
·
(

�2u
�x2

+ �2u
�y2

)
(7)

Y-momentum equation:

u
�v

�x
+ v

�v

�y
= − �p

�y
+ 1

Re
·
(

�2v
�x2

+ �2v
�y2

)
(8)

Energy equation:

u
�T
�x

+ v
�T
�y

= 1

Pr · Re

(
�2T
�x2

+ �2T
�y2

)
(9)

At the interface between the homogeneous fluid and porous medium regions, additional boundary
conditions must be applied to couple the flows in the two domains. The boundary conditions include
flow and heat transfer.
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For flow interfacial condition, the stress jump condition of Ochoa-Tapia and Whitaker [16] is
applied:

1

�

�ut
�n

∣∣∣∣
porous

− �ut
�n

∣∣∣∣
fluid

= �
1√
Da

ut

∣∣∣∣
interface

+ �1 · Re · u2t (10)

where in the porous medium region, ut is the Darcy velocity component parallel to the interface
aligned with the direction t and normal to the direction n; in the homogeneous fluid region ut
is the fluid velocity component parallel to the interface; and � and �1 are adjustable parameters
which account for the stress jump at the interface. Considering the work done and reviewed before
by Ochoa-Tapia and Whitaker [13, 16], for the purpose of demonstrating the implementation of
the present formulation, both � and �1 are varied in the range −1.0 to +1.0 in the present study.

In addition to Equation (10), the continuity of velocity and normal stress prevailing at the
interface is given by

u|fluid =u|porous = vinterface (11)

1

�

�un
�n

∣∣∣∣
porous

− �un
�n

∣∣∣∣
fluid

= 0 (12)

where in the porous medium region, un is the Darcy velocity component normal to the interface;
and in the homogeneous fluid region, un is the fluid velocity component normal to the interface.

For heat transfer interfacial condition, continuities of temperature and heat flux are implemented
here [8, 10, 11, 17–19, 31],

T |fluid = T |porous = Tinterface (13)

Rk
�T
�n

∣∣∣∣
porous

= �T
�n

∣∣∣∣
fluid

(14)

By combining with the appropriate boundary conditions of the composite regions, Equations
(1)–(14) can be used to simulate the flow and heat transfer in a system composed of a porous
medium and a homogeneous fluid.

The local and average Nusselt number and frictional loss [6, 7] are defined as

Nu= qH

(Tw − Ti)k f
(15)

Nuav = 1

L

∫
l
Nu dx (16)

hl =
(

p̄i
� f

+ �i
U 2
i

2

)
−
(
p̄o
� f

+ �o
U 2
o

2

)
(17)

where p̄i and p̄o are the average inlet and outlet pressures, and �i and �o are the kinetic coefficients,
defined as

�i,o =
∫
Ai,o

u3 dA(∫
Ai,o

u dA
)3 (18)

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 56:1705–1729
DOI: 10.1002/fld



1712 X. CHEN ET AL.

3. DISCRETIZATION OF THE GOVERNING EQUATIONS

The discretization of the governing equations are similar with previous research by Yu et al.
[28], and now presented in Appendix. It is based on body-fitted, non-orthogonal grids, and
multi-block strategy. As the energy equations are similar to momentum equations, only the dis-
cretization procedure for momentum is given out. The procedures for velocity and temperature at
the interface are described here.

Although the case of study is that with a flat interface, generalized tangential and normal
coordinates and unit vectors have been used so that the method can be extended to non-flat
interfaces. However, it should be noted that curvature effects at the interface are not rigorously
considered in the original models on which the equations solved are based. Furthermore, in some
cases, structured grid are difficult, even impossible, to construct for complex geometries. Therefore,
in the present study, multi-block grid method is applied to provide a compromise between the
simplicity and wide variety of solvers available for structured grids and an ability to handle
complex geometries that unstructured grids allow. Figure 2 shows details of the interface between
two different blocks. Two neighboring control volumes, lying in Blocks A and B, respectively,
share the interface. The grids in two neighboring blocks match at the interface. The treatment for
fluid–porous medium interface is shown here.

3.1. Interface treatment for velocity and pressure

Blocks A and B (Figure 2) represent fluid and porous medium, respectively. The velocity vector at
the interface is given by vinterface. It can be written in either the x–y or n–t coordinate systems as

vinterface = uex + vey = unn + ut t (19)

where u and v are the components of vinterface in the x and y directions while un and ut are the
vinterface components along n and t directions, respectively. Also, the component ut then can be
written as

ut = uex · t + vey · t (20)

n

• R

y

L •

A: Fluid side B: Porous side 

L′
R′

• S • SR

• NR•

e

se

t

ye
( )

( )

2 2

e ne se

e ne se

e e e

x x x

y y y

l x y

∆ = −
∆ = −

= ∆ + ∆

el

xe x

ne

Interface

interfacevN

Figure 2. Interface between two blocks with matching grids.
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By combining Equations (10), (12) and (19):

1

�

�vinterface
�n

∣∣∣∣
porous

− �vinterface
�n

∣∣∣∣
fluid

= �
1√
Da

ut t + �1 · Re · u2t t (21)

The unit vector (t) parallel to the interface (Figure 2) is calculated from

t= (xne − xse)ex + (yne − yse)ey√
(xne − xse)2 + (yne − yse)2

= �xeex + �yeey
le

(22)

By substituting the components of vinterface in the x and y directions, Equation (21) becomes

1

�

�u
�n

∣∣∣∣
porous

− �u
�n

∣∣∣∣
fluid

= �
1√
Da

u�xe�xe + v�ye�xe
l2e

+ �1 · Re · �xe(u�xe + v�ye)2

l3e
(23)

1

�

�v

�n

∣∣∣∣
porous

− �v

�n

∣∣∣∣
fluid

= �
1√
Da

u�xe�ye + v�ye�ye
l2e

+ �1 · Re · �ye(u�xe + v�ye)2

l3e
(24)

The derivatives at the interface are calculated from the values at auxiliary nodes L ′ and R′;
these nodes lie at the intersection of the cell face normal n and straight lines connecting nodes L
and N or R and NR, respectively, as shown in Figure 2. The normal gradients at the interface can
be calculated by using the first-order difference approximation:

�u
�n

∣∣∣∣
porous

= u|R′ − u|e
LeR′

,
�v

�n

∣∣∣∣
porous

= v|R′ − v|e
LeR′

(25)

�u
�n

∣∣∣∣
fluid

= u|e − u|L ′

LL ′e
,

�v

�n

∣∣∣∣
fluid

= v|e − v|L ′

LL ′e
(26)

The Cartesian velocity components at L ′ and R′ can be calculated by using bilinear interpolation
or by using the gradient at the control volume center:

u|L ′ = u|L + (grad u)L · L′L (27)

To obtain higher-order approximation of the derivatives, the velocity components at more auxil-
iary nodes may be needed. Alternatively, the shape functions may be used, which produces a kind
of combined finite element/finite volume method for calculating the higher-order approximations.

By using Equations (23)–(27) and explicitly calculating the terms at the right-hand sides of
Equations (23) and (24), the Cartesian velocity components u and v at the interface are obtained.
Then, the convective fluxes at the interface can be calculated. The diffusive fluxes are calculated
from Equations (25)–(27). Then, the coefficients AL and AR can be obtained.

To close the algebra equation system, the pressure at the interface must be determined. For a
single-domain approach, the velocity and pressure at the interface are coupled automatically, as the
control volumes there are treated like those in the fluid or porous parts. However, with the present
model, the pressure gradient at the interface may not be continuous due to the rather large Darcy
and Forchheimer terms (Equation (2)), which may result in a rapid pressure drop at the porous side
[26]. This discontinuity of the pressure gradient becomes more severe at higher Reynolds number
and lower Darcy number. Thus, it requires special treatment to estimate the interface pressure from
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that of the vicinities at both sides. A simplistic pressure estimation may give unrealistic, oscillatory
velocity profile. The coupling issue of pressure–velocity at the interface was described in a recent
paper by Betchen et al. [26], who proposed a solution that enables stable calculations. The pressure
is extrapolated in the fluid side to a location at a smaller distance near the interface. From this
location, a momentum balance is then used to estimate the interface pressure. This estimate is then
averaged with the pressure extrapolated from the porous side to obtain the interface pressure. In
the present paper, a less complex treatment was adopted. Extrapolations from the fluid and porous
sides give two different estimates of the interface pressure. The average of the two estimates is
used as the interface pressure. A small number of iterations are required for accuracy.

3.2. Interface treatment for temperature

The heat transfer interface conditions are defined by Equations (13) and (14). Following the
discretization procedure for the velocity above, the discretized equations at the interface are

Rk
�T
�n

∣∣∣∣
porous

− �T
�n

∣∣∣∣
fluid

= 0 (28)

�T
�n

∣∣∣∣
porous

= T |R′ − T |e
LeR′

(29)

�T
�n

∣∣∣∣
fluid

= T |e − T |L ′

LL ′e
(30)

T |L ′ = T |L + (grad T )L · L′L (31)

The temperature values at the interface can be obtained. The coefficients AL and AR for the energy
equations can be used for the discretization along the interface control volume.

4. RESULTS AND DISCUSSION

In the present study, non-uniform, body-fitted and orthogonal meshes are employed, in which the
density of meshes over the step back is larger than those in areas far downstream. The initial
conditions for the computation were either a uniform flow at the inlet or the results of a previous
calculation, often at different Reynolds numbers, Darcy numbers or porosity values. The divergence
criteria are set as follows: ∑|	m+1

i, j − 	m
i, j |

/∑
	m+1
i, j �� (32)

where �= 10−6. For simplicity, the ratio of the effective thermal conductivity of porous medium
to fluid conductivity, Rk is set to be 1; the heat transfer would be more enhanced if the ratio is
larger. The Prandtl number is set as Pr= 0.72, which is the value for air.

To validate the present computational code, Figure 3 compares the results for Re= 800 with
those in benchmark studies, and there is good agreement with them as shown. Considering the
computational cost and accuracy, the grid independency survey (details not given here) shows that
a total 380× 100 mesh, for both porous and fluid domains, is adequate.
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Figure 3. Forced convection past backward-facing step at Re= 800: (a) streamwise velocity profile at
x/H = 7; and (b) lower wall Nusselt number versus axial location.

Figure 4 shows the stream contours of the flow for different Reynolds numbers from 10 to 800,
at Da= 10−2. It is observed that increasing the Reynolds number would increase the recirculation
length, which is the distance from the back of the step to the vortex reattachment point. The flow
field affects the heat transfer and this is shown in Figure 5 for the same Darcy number, in the form
of axial distribution of lower wall Nusselt number. In the recirculation region, the heat transfer
is first reduced. Then, it increases toward the attachment point, after which the Nusselt number
gradually decreases toward the fully developed state. However, for low Re= 10, the recirculation
region is so small that it does not cause much effect on the Nusselt number which shows a
decrease with distance from the step. Higher Reynolds number gives higher Nusselt number as
expected.

When the Darcy number is small, Da= 10−4 (details not shown here), the flow after the step is
different as there is no recirculation region even with Re= 800. There is no flow separation due
to the small porous flow. The lower wall Nusselt number keep decreasing (Figure 6) with distance
from the step. As Re increases to 800, the main heat transfer is convection. In the following
computation, to study mainly the convective mode, the Re is set to 800.

The Darcy number effect is shown in Figure 7, with the same parameters as given in Zhang and
Zhao [6], for the flow field at Re= 800. When the insert has high permeability, the recirculation
length is still long (Figure 7(a)). With a lower permeability (Da= 10−3 in Figure 7(b)), the insert
breaks up the recirculation region into a small vortex in the region porous and a recirculation region
in the fluid domain. With even lower Darcy number (Da= 10−4 and 10−5 in Figures 7(c) and (d),
respectively) the recirculation has disappeared. The effect on heat transfer is shown in Figure 8.
Note that the scale is larger for ease of comparison later with results of Zhang and Zhao [6]. In the
region downstream of the step, there is pronounced heat-transfer enhancement with lower Darcy
numbers (high Nusselt number at Da= 10−4). There is enhanced heat transfer due to elimination
of the recirculation region. After the recirculation region has been suppressed, there is no further
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Figure 4. Streamline plots at Darcy number Da= 10−2, inset length a/H = 0.2, porosity �= 0.4, jump
parameters � = 0 and �1 = 0: (a) Re= 10; (b) Re= 100; (c) Re= 400; and (d) Re= 800.
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Figure 5. Axial distribution of lower wall Nusselt number at Da= 10−2,
a/H = 0.2, �= 0.4, �= 0, and �1 = 0.

enhancement of heat transfer when Darcy number is lowered to 10−5; the Nusselt number drops
due to lower convection in the porous insert. So for this Re= 800, there is an optimal Da between
10−4 and 10−5.
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Figure 6. Axial distribution of lower wall Nusselt number at Da= 10−4,
a/H = 0.2, �= 0.4, �= 0, and �1 = 0.

A comparison with the one-domain results of Zhang and Zhao [6] is also shown in Figure 8.
The main difference in the two methods is the treatment of the interface pressure and velocity as
discussed in Section 3.1. Note that the present stress jump parameters were set to zero to permit a
comparison with the one-domain model. As compared with the one-domain results, there is little
discrepancy of the Nusselt numbers in the regions inside the porous insert and far downstream.
Some discrepancies are found in the region just downstream of the porous insert. However, the
discrepancies are small for Da= 10−4 (see Figure 8). At this small Da, there is no recirculation
region (Figure 7) which may explain why the interface treatment seems to have less effect. The
unseparated gross-flow downstream of the porous inserts, being mainly determined by the channel
height, would be relatively less sensitive to the interface pressure. At larger Darcy numbers (10−2

and 10−3), the discrepancies are significant which is attributed to the presence of the recirculation
regions (see streamline Figures 7(a) and (b)). It is noted that the recirculation lengths computed here
are longer than those of Zhang and Zhao [6]. The comparison indicates that the interface pressure
has greater effects on the downstream flow, and hence the local Nusselt number, when there is
a recirculation region. Thus, a careful treatment of the interface pressure would be advantageous
when the flow pattern is complex.

Figure 9 shows the effect of the porous insert length on the flow field with Da= 10−2. With
an insert length of zero or small, there are two recirculation regions. A longer insert length of
a/H = 0.2 suppresses the upper recirculation region. Longer insert also reduces the length of the
lower recirculation region. However, there is little difference in Nusselt numbers (details not shown
here) as the insert length does not suppress the bottom recirculation. It is not suppressed, even
with a longer insert, because there is insufficient flow resistance with a large Darcy number.

Figure 10 shows the effect of the porous insert length on the flow field with a smaller Da= 10−4.
With longer insert, the recirculation regions are completely suppressed (Figure 10(c) and (d)).
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Figure 7. Streamline plots at Re= 800, a/H = 0.2, �= 0.99, � = 0, and �1 = 0 with various Darcy numbers:
(a) Da= 10−2; (b) Da= 10−3; (c) Da= 10−4; and (d) Da= 10−5.
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Figure 8. Axial distribution of lower wall Nusselt number at Re= 800, a/H = 0.2, � = 0.99, � = 0,
and �1 = 0 with various Darcy numbers.

Figure 11 shows the corresponding axial distribution of lower wall Nusselt number. The longer
inserts give more enhanced heat transfer behind the step due to the elimination of recirculation
region.
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Figure 9. Streamline plots at Re= 800, Da= 10−2, �= 0.4, � = 0, and �1 = 0 with various insert lengths:
(a) a/H = 0.0; (b) a/H = 0.1; (c) a/H = 0.2; and (d) a/H = 0.3.

0 2 4 6 8 10

0 2 4 6 8 10

0 2 4 6 8 10

0 2 4 6 8 10

(a)

(b)

(c)

(d)

Figure 10. Streamline plots at Re= 800, Da= 10−4, �= 0.4, �= 0, and �1 = 0 with various insert lengths:
(a) a/H = 0.0; (b) a/H = 0.1; (c) a/H = 0.2; and (d) a/H = 0.3.

Figure 12 gives out the porosity effect on the axial distribution of lower wall Nusselt number
with Da= 10−4. A smaller porosity gives higher Nusselt number behind the step, as expected.
However, the porosity effect is rather small.
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Figure 11. Axial distribution of lower wall Nusselt number for �= 0.4,
Re= 800, Da= 10−4, � = 0, and �1 = 0.
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Figure 12. Axial distribution of lower wall Nusselt number for a/H = 0.2,
Re= 800, Da= 10−4, � = 0, and �1 = 0.

Figure 13(a) and (b) shows velocity profiles behind the step (x/H = 0.5) for a short and long
inserts, respectively. With a short insert (Figure 13(a)), there is negative or small velocity near the
lower wall due to the recirculation regions (see Figure 9(b) and 10(b)). With a long insert (Figure
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Figure 13. Streamwise velocity profiles at x/H = 0.5, with Re= 800, Da= 10−2, � = 0, and
�1 = 0: (a) a/H = 0.1; and (b) a/H = 0.3.
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Figure 14. Dimensionless channel head loss, with Re= 800, �= 0.4, � = 0, and �1 = 0.

13(b)), the velocity profiles are greatly affected by the Darcy number. With large Da�10−2, there
is negative velocity near the lower wall due to the recirculation region (see Figure 9(d)). When
Da decreases to �10−3, there is forward velocity near the bottom wall as the bottom recirculation
region has been eliminated (see Figure 10(d) for Da= 10−4). The velocity profiles explain the
enhancement of the local heat convection in the bottom region behind the step. However, there
is no additional enhancement below Da= 10−4. Once the recirculation has been suppressed, a
further decrease in the Darcy number to 10−5 will give lower velocity (compared with that of
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Table III. Average Nusselt number for lower wall with different stress jump
parameters at Re= 800, �= 0.4, a/H = 0.2.

Da � �1 Nuav Da � �1 Nuav

10−2 0 −1 3.276 10−4 0 −1 3.855
0 0 3.273 0 0 3.826
0 1 3.273 0 1 3.785

−1 0 3.272 −1 0 3.844
0 0 3.273 0 0 3.826
1 0 3.275 1 0 3.807
1 1 3.275 1 1 3.741

−1 −1 3.273 −1 −1 3.902
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Figure 15. Effect of stress jump parameters on the local Nusselt number with a/H = 0.2, Re= 800,
�= 0.4, and Da= 10−4: (a) � effect with �1 = 0 and (b) �1 effect with �= 0.

Da= 10−4 as shown in Figure 13(b)). Thus, there is an optimal Darcy number to achieve enhanced
heat transfer at the lower wall as mentioned earlier (shown in Figure 8).

In Figure 14, the dimensionless channel head loss (normalized by that with no porous insert) is
shown as a function of insert length and Darcy number. The head loss is higher with longer insert
length or smaller Darcy number, as expected. To achieve optimal enhancement of heat transfer, it
is necessary to avoid excessive frictional losses. Thus, a combination of medium Darcy number
and insert length is preferred.

The stress jump parameters were varied from −1 to +1 and its effect on the average lower wall
Nusselt number is presented in Table III for Re= 800. It can be observed that for the larger Darcy
number Da= 10−2, there is little effect; the insert is too porous to affect the recirculation region
as discussed earlier. For the smaller Darcy number Da= 10−4, the difference is more noticeable
but still not large, about 4% when both � and �1 are varied from −1 to 1. It is not surprising that
the jump coefficients have little effect on average values like the wall Nusselt number presented
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Figure 16. Effect of stress jump parameters on the velocity profile at x/H = 3.0 with a/H = 0.2, Re= 800,
�= 0.4, and Da= 10−4: (a) � effect with �1 = 0 and (b) �1 effect with �= 0.
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Figure 17. Effect of stress jump parameters on the temperature profile at x/H = 3.0 with a/H = 0.2,
Re= 800, �= 0.4, Da= 10−4: (a) � effect with �1 = 0 and (b) �1 effect with � = 0.

in Table III. In the literature, it is possible to find studies [32] which show that even the type of
formulation has almost no effect on global coefficients.

The importance of a numerical method that considers properly the effect of the jump coefficients
or the formulation of the boundary conditions should be assessed by analyzing local variable
predictions in the neighborhood of the interface fluid–porous medium. The effect of the stress
jump parameters on the local Nusselt number is shown in Figure 15. Their effects on the local
velocity and temperature profiles at x/H = 3.0 are shown, respectively, in Figures 16 and 17. It
is noted that there are some effects of � and �1 when they are varied from −1 to +1. Positive
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parameters give a larger peak velocity and smaller velocity near the wall. Thus, the temperatures
are smaller there and hence the Nusselt numbers are larger.

The effect of stress jump parameters is small in the present case because the dominant flow
direction is near normal to the interface. In parallel flow past a porous–fluid interface [27], in
which the porous medium partially fills the channel, it was found that the velocity profile was very
sensitive to the stress parameters. It is expected that the stress parameters will have greater effect
on the heat transfer, if the porous insert was designed to partially fill the channel in order to avoid
high friction losses.

5. CONCLUSION

A numerical method was implemented to treat the forced convection in porous and fluid domains
coupled at the interface by stress jump for velocity. The continuities of temperature and heat flux
were imposed. The method was based on finite volume method, with body-fitted, non-orthogonal
grids, and multi-block strategy. The generalized Darcy–Brinkman–Forchheimer extended model
was used to describe the flow in the porous region, considering the inertia, convective, and viscous
effects.

The two-dimensional forced convection through a porous insert behind a backward-facing step
was simulated numerically. The stress jump condition, including viscous and inertia effects, was
used for the interface between the porous and fluid media. Results are presented with flow con-
figurations for different Darcy numbers, 10−2 to 10−5, porosities from 0.2 to 0.8, and Reynolds
numbers from 10 to 800, and ratio of insert length to channel height from 0.1 to 0.3. The Darcy
number, Reynolds number and insert length influence the recirculation regions and hence the heat
transfer, but the porosity effect is small. To achieve optimal heat transfer effect, without excessive
frictional loss, it is preferable to use a medium insert length with flow at medium Darcy number
and large Reynolds number.

The stress jump parameters have small effects on the average lower wall Nusselt number. For
the smaller Darcy number Da= 10−4, the difference in Nu is about 4%, when both � and �1
are varied from −1 to 1. The effects are more discernible on the local velocity and temperature
profiles. The stress parameters may have even more significant effects on the heat transfer if the
dominant flow direction is nearly tangential to the interface, as in the case of a porous insert that
partially fills the channel in order to avoid high friction losses.

The present work continues the previous study of Yu et al. [28], which treated the flow boundary
condition at the interface between porous and homogeneous regions by imposing a shear stress
jump with a continuity of normal stress. The thermal boundary conditions, as well as the discretiza-
tion procedure for the energy equation, are added in the present paper, based on the continuity
of temperature and heat flux. Such thermal boundary conditions, in previous numerical works
[18, 24–26, 32], have been combined with continuity of shear and normal stresses together with
slip or no-slip velocity boundary conditions. However, the present flow boundary conditions are
a shear stress jump with a continuity of normal stress. It can address general problems of forced
convection in porous and homogeneous fluid domains, in which the flow and thermal interfacial
conditions need to be considered in detail. In addition, the present numerical implementation is
suitable for complex geometries, as it is based on the finite volume method using body-fitted grids
and multi-block technique.
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From the numerical method point of view, the present work contributes a numerical implemen-
tation that can deal with the flow-thermal boundary-conditions at the interface between porous
medium and homogeneous fluid domains. The method was applied to the physical situation of a
backward facing step with porous insert that typifies convective heat transfer in a fluid–porous het-
erogeneous region. The main contribution relies on the numerical technique not in the development
of the stress jump flow model which was derived by Ochoa-Tapia and Whitaker [16].

APPENDIX: DISCRETIZATION OF THE GOVERNING EQUATIONS

A.1. Homogeneous fluid region

A typical control volume is shown in Figure A1. For a general dependent variable 	, a final
discrete form over the control volume can be written as

Fe + Fw + Fn + Fs = S (A1)

where Fe, Fw, Fn and Fs are the overall fluxes (including both convection and diffusion) of 	 at
faces e, w, n, s, which denote east, west, north, and south of the control volume; and S is the
source term. The detailed numerical methodology for obtaining the convective flux (Fc

e , Fc
w, Fc

n ,
and Fc

s ) and diffusive flux (Fd
e , Fd

w, Fd
n , and Fd

s ) are given in Ferziger and Perić [33].
With the midpoint rule approximation, the convective flux at face east can be calculated as:

Fc
e =

∫
Se

	u · n dS ≈me	e (A2)

where me is the dimensionless mass flux cross the surface e; Se is the surface area of face e; and
	e is the value of 	 at the center of the cell face. me and Se can be calculated as

me = (Sxu + Syv)e, Se =
√

(Sxe )2 + (Sye )2 (A3)

′

Figure A1. Interface between two blocks with matching grids.
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where u and v are the velocity components in the x and y directions; Sx and Sy are the surface
vector components.

To avoid the non-orthogonal effect, the midpoint rule with the deferred correction term [34]
applied to the integrated diffusive flux is given by

Fd
e = 1

Re

(
�	

�n

)
e
Se = 1

Re
Se

(
�	

�


)
e
+ 1

Re
Se

[(
�	

�n

)
e
−
(

�	

�


)
e

]old
(A4)

If an implicit flux approximation of the term (�	/�
)e is applied, the final expression of
Equation (A4) then becomes

Fd
e = 1

Re
Se

	E − 	P

LPE
+ 1

Re
Se(grad	)e

old · (n − i
) (A5)

where LPE stands for the distance between P and E ; i
 is the unit vector in the 
-direction.
The different methods to approximate the value of � and its derivative at the cell face result in

different interpolation schemes. In the present study, the central difference scheme (CDS) is used.
Then the cell-face values of the variables are approximated as

	e ≈	e′ = �e	E + (1 − �e)	P for face e (A6)

where the interpolation factor �e is defined as

�e = |re − rP |
|re − rP | + |rE − re| (A7)

where re is the position vector.
Equation (A6) is a second-order approximation at the location e′ on the straight line connecting

nodes P and E (Figure A1). If the cell-face center e does not coincide with the location e′, a
correction term needs to be added in Equation (A6) to restore the second-order accuracy, which
can be expressed as follows:

	e ≈	e′ + (grad	)e′ · (re − re′) (A8)

To obtain the deferred derivatives at the cell face, they are calculated first at the control volume
centers and then interpolated to the cell faces. By using the Gauss theorem, the derivative at the
CV centers can be approximated by the average value over the cell:(

�	

�xi

)
P

≈
∫
�(�	/�xi ) d�

��
=
∫
S
	ii · n dS ≈∑

c
	cS

i
c, c= e, n, w, s (A9)

Then, the cell-center derivatives can also be interpolated to the cell-face centers using the same
interpolation as that described by Equations (A6)–(A8).

The volume integral of the source term is

Q	 =
∫

�
S	 d�≈ S	�� (A10)

where � is the cell volume.
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The momentum equations contain a contribution from the pressure. The volume integral of the
pressure gradient term in the u-momentum equation can be obtained by

Qp
u,P =

∫
�

−
(

�p
�x

)
P
d�≈ −

(
�p

�x

)
P

�� (A11)

Then, the final discrete form of the u-momentum equation is

Au
PuP +∑

l
Au
l ul = Q∗

u,P −
(

�p

�x

)
P

�� (A12)

where P is the index of an arbitrary node; the index l denotes the four neighboring points E , W ,
S, N ; the coefficients A	

P , A
	
E , A

	
W , A	

N , A
	
S are those of the resultant algebraic equations; and

Q∗
u,P is the integral of the source term contributed by other forces.
In the present study, SIMPLEC method [35] is applied to couple the velocity and pressure. To

avoid oscillations in the pressure or velocity, the interpolation proposed by Rhie and Chow [36]
is adopted:

ume = (um)e − ��e

(
1

Au
P +∑

l A
u
l

)
e

[(
�p

�x

)
e
−
(

�p

�x

)
e

]m−1

(A13)

where m is iteration step for each time level.

A.2. Porous medium region

Equations (1)–(3) recover the standard Navier–Stokes equations when the porosity approaches
unity. Thus, the discretizing procedure for porous medium is similar to that for the homogeneous
fluid as the two sets of governing equations are similar in form. The discretized diffusion flux
is similar in form to Equation (A6). The convective flux at a cell face is similar in form to
Equation (A2) except for a small change:

Fc
e = 1

�

∫
Se

u

�
u · n dS ≈meue/�

2
e (A14)

The volume integral of the pressure gradient term (similar in form to Equation (A11)) is

Qp∗
u,P = 1

�

∫
�

−
(

�(�p∗)
�x

)
P
d�≈ − 1

�p

(
�
�p

�x

)
P

�� (A15)

For the Darcy term in Equations (2) and (3), the volume integral can be expressed as

Qu
D =

∫
�

−
(

1

Da · Reu
)

p
d�= −

(
1

Da · Re
)

p
�� · u p (A16)

For the Forchheimer term, the volume integral is given by

Qu
F =

∫
�

−
(

1.75 · √
u2 + v2√

150 · √
Da · �3/2

u

)
p

d�= −
(

1.75 · √
u2 + v2√

150 · √
Da · �3/2

u

)
p

�� · u p (A17)

It is convenient to treat the Darcy and Forchheimer terms as source terms. However,
Equations (A16) and (A17) indicate that, after integrating, both terms become a product of Darcy
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velocity component and a coefficient. The two coefficients can be added into the coefficients of
the algebraic equation Au

p, which will accelerate the convergence rate.
The procedure to obtain the pressure correction equation is also similar to that for homogeneous

fluid (Equation (A13)), except for a small change:

ume = (um)e − ��e

(
1

Au
P +∑

l A
u
l

)
e

[(
�(�p∗)

�x

)
e
−
(

�(�p∗)
�x

)
e

]m−1

(A18)
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